

An Exelon Company

October 2015

Community Solar and The Grid

The Impact of Community Solar on the Electricity Network

Manuel Avendaño manuel.avendano@comed.com

Matthew Zillmann matthew.zillmann@comed.com

Contents

- Introduction
- Challenges
- Understanding the Impact
- Interconnection Process
- Additional Benefits

Introduction

- Traditionally electricity has operated with one-way power flow
- Distributed generation like community solar is changing this

Challenges

- Network has predominantly been designed for one-way power flow
- To a certain point network can accommodate distributed generation
 - This limitation is known as Hosting Capacity
 - Every feeder is unique and will have a different hosting capacity
- Beyond this network performance is negatively impacted and mitigation measures may be required

Main Network Issues from Distributed Generation	
Voltage	Overvoltage
	Voltage regulation
	Phase imbalance
Loading	Equipment overload
Protection	Loss of coordination
	Higher short-circuit level
	Anti-islanding

Important to consider **location** on network and **size** (MVA) of distributed generation

An Exelon Company

Understanding the Impact

• Demonstrating the importance of size and location

Interconnection Process (I/II)

- Existing interconnection process designed to expedite assessment process while minimizing the impact of distributed generation on network
- See ICC Standard 466: Electric Interconnection of Distributed Generation Facilities
 - Builds on FERC Order 2006: Standardization of Small Generation Interconnection Agreements and Procedures

ICC Standard 466 defines the process ComEd required to follow in assessing interconnection requests:

- Level 1 connections < 10kVA (Expedited Review)
- Level 2 connections < 2MVA (Expedited Review)
- Level 3 connections < 10MVA (Expedited Review)
- Level 4 connections <10MVA (Special Cases)

Feasibility study would cover (at a minimum):

- Protection device capabilities
 - Short circuit capability, protection reach / coordination, grounding requirements etc.
- Possible thermal overloading of equipment
- Voltage impacts (overvoltage, regulation, flicker)
- Impacts on system operation and stability
- Impacts of reverse power flow

Additional Benefits

- If sized and located correctly, distributed generation can actually benefit performance of network
 - Reduction of network loading (if midday peak)
 - Voltage regulation (with smart inverters)
 - Reduced losses (generation closer to customer)
 - Increased diversity in generation resources (enabler for microgrids)
- Using modelling techniques it is possible to understand the impact of distributed generation size and location on a specific feeder
 - Enables calculation of optimal location and size of distributed generation to minimize impact on network

Note: Achievable benefits are feeder specific

Summary

- Impact of distributed generation on the network is largely dependent on size and location
 - This is something that can be modelled and understood to provide optimal sizing and location of distributed generation
- If distributed generation is well sized and located it can also provide additional benefits to the network, community and consumers

An Exelon Company

Questions?